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The physical processes occurring in electrode regions and the positive column of a cylindrical magnetron
discharge in crossed electric and magnetic fields are investigated based on the solution of the Boltzmann
kinetic equation by a multiterm decomposition of the electron phase space distribution function in terms of
spherical tensors. The influence of the distribution function anisotropy on the absolute values and radial
profiles of the electron density and rates of various transport and collision processes is analyzed. The spiral
lines for the directed particle and energy transport are obtained to illustrate the anisotropy effects in depen-
dence on the magnetic field. The electron equipressure surfaces are constructed in the form of ellipsoids of
pressure and their transformation in the cathode and anode regions is studied. A strong anisotropy of the energy
flux tensor in contrast to a weak anisotropy of the momentum flux density tensor is found. Particular results are
obtained for the cylindrical magnetron discharge in argon at pressure 3 Pa, current 200 mA, and magnetic
fields ranging within 100 and 400 G.
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I. INTRODUCTION

Magnetron discharge in the form of a coaxial cylindrical
inner cathode and outer anode with radial electric and axial
magnetic fields was studied experimentally and theoretically
f1–5g. Electron distribution measurements were performed in
dependence on the radial position and magnetic field
strengths, as well as measurements of the electron density
and mean energy, potential profiles, and radial distribution of
metastable, resonance, and radiating atoms. On the other
hand, the processes occurring in a cylindrical magnetron dis-
charge were simulated by various methods including
particle-in-cell Monte-Carlo collisionssMCCd f4g and ki-
netic self-consistent modelingf5g.

In our previous paperf5g a self-consistent model of a
magnetron discharge was developed based on the Boltzmann
kinetic equation solution in the two-term approximation with
account of the effects of electric and magnetic fields, spatial
gradients, and important collision processes. A specific de-
formation of the distribution function from cathode to anode
was demonstrated, and macroscopic quantities, such as elec-
tron density and mean energy, electron and ion radial current
densities were obtained. Description of the electron compo-
nent was supplemented by equations for the ions and field.
Subsequently, the edge effects connected with the finite
length of magnetron and the presence of the axial electric
field and plasma axial inhomogeneities were taken into ac-
count f6g. Additionally, the metastable and resonance atom
formation processes in similar discharges were discussedf7g.
Results were compared with experiments.

The present paper reports on investigations of the electron
plasma component in a cylindrical magnetron discharge, ob-
tained from the solution of the Boltzmann kinetic equation
using the multiterm expansion discussed in the preceding
paper f8g. The multiterm approach permits us to consider
various phenomena connected with the distribution function

anisotropy which is caused by strong electric fields in the
cathode region, and by absorption of electrons on the anode
in the anode region. A uniform description of the positive
column and electrode region, as well as the possibility to
obtain detailed information about the distribution function
and macroscopic quantities, can be attributed to advantages
of the method. The general equations formulated in the pre-
vious paperf8g were applied to real operating conditions of
an argon cylindrical magnetron discharge, and particular re-
sults for the terms of the electron distribution function and
macroscopic quantities responsible for transport of particles,
momentum, and energy obtained. The radial evolution of
these quantities is considered in dependence on magnetic
field strength.

II. RADIAL POTENTIAL PROFILES
AND DISTRIBUTION FUNCTIONS

The theory of the multiterm representation of the Boltz-
mann kinetic equation in terms of spherical tensorsf8,9g
is applied to study the magnetron discharge between two
cylindrical coaxial electrodes of lengthL=30 cm with the
radii of the inner cathodeRC=0.9 cm and the outer anode
RA=3 cm in argon at neutral gas pressure 3 Pa, currenti
=200 mA, and magnetic fieldsB=100, 150, 200, and 400 G.
This corresponds to the range of reduced magnetic fields
from B/N=12 500 to 50 000 Hx. The magnetic field is cre-
ated by coils with current; it is uniform along the axis of the
cylinder in contrast to planar configurations, where the mag-
netic field is strongly inhomogeneous.

This type of discharge has been studied experimentally in
a series of papersf1–3g. The radial distribution of the elec-
tron density as well as the difference of the potentials be-
tween the cathode and anode,VAC, are the quantities mea-
sured accurately. To calculate the electron distribution
function data on the radial profiles of the potential are
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needed. These cannot be obtained with the required accuracy
from direct probe measurements due to the large field gradi-
ent in the electrode region and positive column, and errors in
determination of the plasma potential from the second de-
rivative of the probe current. In further calculations the radial
profile of the electric field strength was chosen in such a way
that the voltage on the discharge gapVAC corresponds to the
experimentally measured value, and the electron distribution
function calculated in this field gives the absolute values and
radial profile of the electron density equal to the experimen-
tally measured density of electrons.

The radial profiles of the potentials are shown in Fig. 1,
and the radial distributions of the electron densities formed
in these potential fields are presented in Fig. 2. The good
agreement between the measuredf3g and calculated values of
the absolute electron density indicates that the chosen poten-
tial profiles correspond to the real ones. There is also agree-
ment between the chosen radial distribution of the potential
and the measured floating potentialsssymbols in Fig. 1d. The
plasma potential has also been measured in the experiments
but with less accuracy. The specific structure of the potential
distributions is connected with the presence of strong electric
fields in the cathode region and weak fields in the positive
column. An increase in the electric field strength in the posi-
tive column and anode region is observed with increasing

magnetic field. The fall of the potential between cathode and
anode decreases noticeably from 660 V atB=100 G to
350 V atB=400 G.

The distribution functions formed in these potentials were
obtained by using the spherical tensor multiterm representa-
tion described in the preceding paperf8g. The system of
ordinary differential equationss25d–s34d f8g was written in
finite differences on a grid nonequidistant in both total en-
ergy and radius coordinates. A numerical method for split
boundary value problemsf10g was used, in which the indices
of the required functions are shifted in dependence on the
boundary conditions set on the right or left boundaries. This
method provided stability of the numerical scheme with the
boundary conditions being appropriately set for expansion
coefficients with even and oddl indexes. The obtained sys-
tem of linear equations for ten components of the distribution
function was solved at constant total energy for each energy
grid point. The solution region of the system and boundary
conditions were discussed in the preceding paper. The result-
ant distribution functions were normalized by the value of
electron current density at the anodeeje. At the anode the
electron current density equals the total current densityej0
related to the discharge currenti according to

i = 2prej0srdL.

The isotropic part of the distribution functionf0sU ,rd is
shown in Fig. 3 in dependence on the kinetic energyU and
radial coordinater for B=100 and 400 G. The electron den-
sities calculated using the isotropic distributionsf0sU ,rd
are represented in Fig. 2. The relative errordn= uns4dsrd
−ns2dsrdu /ns4dsrd, estimated according to the accuracy crite-
rion f11g for electron densities calculated in the two-term
fns2dsrdg and four-termfns4dsrdg approximations, equals 0.05
in the positive column and increases up to the magnitude 0.5
near both electrodes at the lowest magnetic field. This error,
as expected, decreases with increasing magnetic field
strength.

In calculating the distribution function an initial
Gaussian-like beam of high-energy electrons was assumed to

FIG. 1. Radial distributions of the potential in dependence on
magnetic field strength. Symbols are the experimentally measured
floating potentials. The potential differences between cathode and
anode correspond to experimentally measured values.

FIG. 2. Radial profiles of the electron density. Full and broken
lines show the multiterm and two-term approximation results, re-
spectively. Symbols are the data from experiments.
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be ejected from cathode into the plasma. Specific deforma-
tions of the distribution function with increasing magnetic
field can be seen in Fig. 3. At weak magnetic fieldss100 Gd
a pronounced undulating structure is formed, that moves in
an ordered way along the radius and energy and reaches the
anode. This structure is connected with a relaxation of the
initial beam of electrons in inelastic and ionizing collisions.
The distribution function tail is extended to very high kinetic
energies, so that the electron mean energy reaches 280 eV in
the cathode region and then decreases to 1.5 eV in the posi-
tive column. At large magnetic fields400 Gd this undulating
structure vanishes. The distribution function on approaching
the anode decreases rapidly, and the mean electron energy
varies from 100 eV near the cathode to 4 eV in the quasineu-
tral plasma. The difference in the electron mean energies
under two magnetic field conditions is stipulated by changes

in the potential profilessFig. 1d in dependence on magnetic
field. The electric field strength in the cathode region at weak
magnetic fields is remarkably larger than that at the strong
fields, but in the positive column the situation is opposite.

The undulating structure formation in the cathode region
has been discussed in detail inf5g. At weak magnetic fields
the structure with peaks in the distribution function is trans-
ported through the positive column to the anode. At strong
magnetic fieldsse.g., B=400 G, Fig. 3d the structure is
smoothed. This effect can be explained by the decrease in the
energy relaxation length with increasing magnetic field. The
electron distribution function relaxation occurs on the length
shortest oflinel<Uex/ seEd and l«<sM /med1/2rL f6g, where
rL is the radius of electron cyclotron motion,Uex is the ex-
citation threshold, andme and M are the electron and atom
masses. At weak magnetic fields these lengths are compa-
rable to or even exceed the magnetron dimensions; therefore
the peaks in the electron distribution persist in the whole gap.
With increasing magnetic field, both relaxation lengths
shorten due to the increase of both the electric and magnetic
fields, thus resulting in the distribution localization and flat-
tening.

Similar dependencies are observed in the behaviour of the
higher-order terms of the distribution function, for example
on the functionf1=ResF1,1d sFig. 4d. The terms with higher-
l indices oscillate rapidly especially at weak magnetic fields,
so that their visual three-dimensional presentation is difficult.
The influence of the higher-order terms will be illustrated on
macroscopic quantities.

III. BALANCE EQUATIONS

The balance equations identically follow from the Boltz-
mann kinetic equation and must hold for any method of dis-
tribution function decomposition. In what follows, we use
the same designations as in the previous paperf8g.

With respect to the cylindrical magnetron discharge con-
figuration the balance equations for the electrons with charge
−e have the following forms:

the particle balance equation

1

r

]

]r
rj r = Id ; s1d

the energy balance equation

1

r

]

]r
rj ur + eEjr = − sHel + Hex+ Hiod; s2d

the radial momentum balance equation

]

]r
p + neE+ nefv 3 Bgr +

1

r2

]

]r
r2Prr +

Pzz

r
= − Rr

scd; s3d

and the azimuth momentum balance equation

nefv 3 Bgw +
1

r2

]

]r
r2Prw = − Rw

scd. s4d

The particle balance equations1d, or equation of continuity,
reads that the gain of particles by ionizing collisions

FIG. 3. Isotropic part of the electron distribution function
f0sU ,rd at magnetic field strengthsB=100 and 400 G.RC

=0.9 cm,RA=3 cm.
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Idsrd =Î 2

me
E

Udi

`

UNQdif0sU,rddU s5d

causes equal divergence of the particle fluxs j rd in the radial
direction,

j rsrd =
1

3
Î 2

me
E

0

`

ResF1,1dU dU. s6d

Here, Id is the direct ionization rate,N is the atom density,
Qdi is the ionization cross section, andUdi is the ionization
potential.Fl,m are the coefficients for the distribution func-
tion decomposition, wherel =0,1,2,3 andm=−l , . . . ,l. The
componentF0,0 corresponds to the isotropic distribution;
ResF1,1d and ImsF1,1d are the analogs for radial and azimuth
anisotropic distribution in the two-term approximation.

According to the energy balance equations2d the differ-
ence between the power gainseEjrd and power losses in
elasticsHeld, inelasticsHexd, and ionizingsHiod collisions

Hel = 2
me

M
Î 2

me
E

0

`

U2NQdf0sU,rddU,

Hex= UexÎ 2

me
E

Uex

`

UNQexf0sU,rddU,

Hio = UdiId

is compensated for by the divergence of the radial energy
flux

jur =
1

3
Î 2

me
E

0

`

ResF1,1dU2dU.

Here, Qd and Qex are the momentum transfer and total in-
elastic cross sections, andUex is the excitation threshold.

The main contributions to the radial momentum balance
equations3d are connected with the particle acceleration due
to the electric fieldseEnd, the gradient of pressure

p = s2/3dnUe, s7d

wheren is the electron density andUe is the mean energy,

n =E
0

`

f0U
1/2dU, nUe =E

0

`

f0U
3/2dU,

and radial motion due to the action of the Lorentzian force

nefv 3 Bgr = meV jw,

where the azimuth particle flux is

jw = −
1

3
Î 2

me
E

0

`

ImsF1,1dU dU s8d

andV=eB/me is the frequency of electron cyclotron motion.
The rate of momentum loss due to collisions

Rr
scd =

2

3
E

0

`

U3/2NQS ResF1,1ddU

and the terms containing the second rank tensor components

Prr =
2

5
E

0

`

U3/2fResF2,2d − F2,0/3gdU, s9d

Pzz=
4

15
E

0

`

U3/2F2,0dU s10d

contribute a little Here,QS=Qd+Qex+Qdi.
The balance equation for the momentum transport in the

azimuth directions4d suggests an equality of the Lorentzian
force

nefv 3 Bgw = meV j r

to the sum of the azimuth friction force

FIG. 4. Anisotropic part of the electron distribution function
f1sU ,rd at magnetic field strengthsB=100 and 400 G.
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Rw
scd =

2

3
E

0

`

U3/2NQS ImsF1,1ddU

and the gradient of the corresponding component of the an-
isotropic pressure tensor

Prw = −
2

5
E

0

`

U3/2 ImsF2,2ddU. s11d

As it is seen from the balance equations for the scalar
quantitiess1d ands2d the gains of the particles and energy in
the elementary volume are compensated for by the fluxes
going in the radial direction only. The vector components of
the momentum transports3d and s4d and the tensor compo-
nents of the energy flux transport are balanced in both the
radial and azimuth directions.

IV. EFFECT OF MAGNETIC FIELD ON THE TRANSPORT
QUANTITIES

The physical pattern of the processes occurring in the cy-
lindrical magnetron discharge in dependence on magnetic
field strength can be illustrated on macroscopic quantities
calculated using the corresponding expansion coefficients of
the obtained distribution functions.

A. Transport of particles

The radial dependencies of the ionization rates5d and ra-
dial s6d and azimuths8d components of the electron flux
density are shown in Fig. 5. Broken lines illustrate the results
obtained in the two-term approximation.

The ionization rate strongly increases from the cathode
through the cathode fall and reaches its maximum in the
region of transition from strong electric fields in the cathode
region to weak fields in the positive column; then it de-
creases smoothly toward the anode. A noticeable increase of
the ionization rate in the anode region atB=400 G is caused
by the presence of an explicit anode fall formed at large
magnetic field strengthssFig. 1d. To avoid encumbering fig-
ures, the two-term approximations results are given for weak
s100 Gd and strong s400 Gd magnetic fields only. The
higher-order terms do not have a strong influence on the
values of ionization rate. The relative errordI, estimated for
ionization rates in the two- and four-term approximations by
analogy to dn discussed above, amounts to 0.15 atB
=100 G andr ,1.5 cm and decreases toward the anode rap-
idly. At B=400 G this error does not exceed the valuedI
=0.06.

According to Fig. 5, the azimuth electron flux consider-
ably exceeds the radial one. Similar proportion of the radial
and azimuth components of the particle flux vector results in
directed motion of the electrons along spiral trajectories in
transverse sections of cylindrical magnetron. These trajecto-
ries can be easily computed from the equations of directed
motion written in the form

dr

dt
= ursrd, ur ut=0 = RC,

dw

dt
=

uwsrd
r

, uwut=0 = w0,

where ursrd= j rsrd /nsrd and uwsrd= jwsrd /nsrd are the radial
and azimuth components of the electron directed velocity
andw0 is the initial phase.

Trajectories of the electron directed motion from cathode
to anode are shown in Fig. 6 under various magnetic field
conditions. These trajectories coincide with the lines of cur-
rent, a tangent to the curves at each point gives the direction
of the electron flux vectorj , with modulusj =s j r

2+ jw
2d1/2. The

discharge currenti is transported by the radial componentj r
only. The figure shows that the number of rotations in the
plane sr ,wd increases with the increase of magnetic field.
The time required for an electron to travel the distance from
cathode to anode amounts to,10–20ms depending on
magnetic field.

An effect of strong anisotropy on the lines of current
should be noted for the cathode region atB=100 G. There is
a short range of radial positions in this region, wherejw

becomes positivesFig. 5d, which results in distortions of the
electron trajectories. A more comprehensive discussion of
this phenomenon requires taking account of higher-order ex-
pansion coefficients for the distribution function.

Under the present conditions the magnetic field has neg-
ligible effect on the ion motion, thus the azimuth component
of the directed velocity is much smaller than the radial one.

FIG. 5. Radial profiles of the direct ionization rateId sad, radial
electron fluxj r sbd, and azimuth electron fluxjw scd. Full and broken
lines show the multiterm and two-term approximation results, re-
spectively. Numbers are the magnetic field strengths in gauss.
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The above considered directed motion of the charged par-
ticles is a consequence of collisions in the plasma. In the
hypothetical case of a collisionless motion, both electrons
and ions will travel along circles due to the electric drift in
the crossed fields; the radial component of their directed ve-
locities will equal zero.

B. Transport of momentum

In both the two-term and multiterm approximations, the
forcesensE+fv3Bgrd acting on electrons in an elementary
volume and appearing in the radial momentum balance equa-
tion s3d are compensated for mainly by the gradient of iso-
tropic pressure of the electronsp, Eq. s7d. These quantities
are represented in Fig. 7. Other terms in Eq.s3d are two or
three orders of magnitude smaller with the exception of their
values in the electrode regions. A formation of a pronounced
maximum in the force termneE in the transition range be-
tween the cathode region and positive column is stipulated
by a decrease of the electric field strength and increase of
electron density. At magnetic field strengths of the order of
100–150 G this maximum is equalized by the isotropic pres-
sure gradient; at higher values of the magnetic field the con-
tribution of the Lorentzian force increases. The peaks of ion-
ization rates clearly seen in Fig. 5sad are also connected with
this maximum. It should be noted that the nonlocal character
of the distribution function formation leads to significant
broadening of ionization rate profiles.

According to calculation results of the azimuth momen-
tum balance equation terms, the Lorentzian force in the azi-
muth directionnefv3Bgw=mV j r is compensated for by the
force of friction Rw

scd at all radial positions except for the
anode region where the electron pressure anisotropyfsecond

term on the left hand side of Eq.s4dg becomes pronounced.

C. Anisotropy of electron pressure

Using the multiterm decomposition of the electron distri-
bution function the problem of the electron pressure aniso-
tropy can be analyzed.

By the tensor of total pressure of electrons we mean the
quantity

P = nmekvvl. s12d

The electron velocityv is represented sometimesf12g as a
sum of the directedu and randomw velocities. The tensor of
pressureP is then called the tensor of momentum flux and
separated into two summands,

P = nmekuul + nmekwwl.

The first summand describes the momentum transport due to
the directed motion. The second summand is called the pres-
sure tensor and is separated, in turn, into the scalar isotropic
pressurep and the viscous tension tensor. This approach is
useful for hydrodynamic descriptions of particle transport.

In the framework of the kinetic description of electron
motion it is more expedient to represent the total pressure

FIG. 6. Lines of electron current in the planez=const of the
cylindrical magnetron discharge. Multiterm approximationsfull
linesd is compared with the two-term approximationsbroken linesd.

FIG. 7. Radial profiles of the electric field forcesad, Lorentzian
force sbd, and isotropic pressure gradientscd in units 1011 eV cm−4.
Full and broken lines are the results of the multiterm and two-term
approximations, respectively. Numbers on curves indicate magnetic
field strength in gauss.
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tensors12d by a sum of the isotropic pressure tensor

pI = nmeKv2

3
IL =

2

3
nUeI ,

and the anisotropic pressure tensor

P = nmeKvv −
v2

3
IL , s13d

whereI is the second rank identity tensorf9,13g.
The tensor of anisotropic pressure was discussed in the

preceding paperf8g along with the calculations of its com-
ponents. The electron isotropic pressure and anisotropic pres-
sure tensor components calculated by Eqs.s9d, s10d, and
s11d, are shown in Fig. 8.

The figures indicate that the isotropic pressure in the posi-
tive column exceeds the components of the tensorP by two
or three orders of magnitude. At the same time, the electron
gas pressure is a fraction of the order of 10−4 of the neutral
gas pressure. In the near-electrode regions a significant an-

isotropy of the electron pressure becomes apparent. The di-
agonal elements of the anisotropic pressure tensorPrr , Pzz,
and Pww=−sPrr +Pzzd exceed noticeably the nondiagonal
componentsPrw=Pwr.

The anisotropy of the electron pressure can be demon-
strated in the following way. The tensor of pressure can be
represented as a surface of equal pressure and considered at
any point with cylindrical coordinatesr ,w ,z of the cylindri-
cal magnetron discharge in the basis of unit vectorser ,ew ,ez.
For the isotropic pressure given by tensorpI , this equipres-
sure surface corresponds to a sphere of radiusp. The normal
to the surface of the sphere indicates the direction of the
pressure force. In the presence of nonzero anisotropic com-
ponents, the total pressure tensors12d has the following
form:

P = 1p + Prr Prw 0

Pwr p + Pww 0

0 0 p + Pzz
2 . s14d

If the nondiagonal elements of tensors14d equal zero, the
equipressure surface determined by this tensor is transformed
into an ellipsoid with the semiaxes equal to

ar = Prr + p, aw = Pww + p, az = Pzz+ p. s15d

The presence of equal nondiagonal termsPrw=Pwr does not
change the tensor’s symmetry. A symmetrical tensor can be
reduced to diagonal form by rotating the initial orthogonal
basiser ,ew ,ez. The diagonalization method consists in find-
ing the eigenvalues and eigenvectors of the tensors14d. Here,
the second rank tensor’s eigenvectors form a new basis with
unit vectorser8 ,ew8 ,ez8, and the eigenvalues give the values of
the diagonal elements. Projections of the eigenvectors on the
unit vectors of the initial basis yield the angles of rotations.
The pressure tensors14d written in the new basis takes the
diagonal form

P8 = 1sp + Prrd8 0 0

0 sp + Pwwd8 0

0 0 sp + Pzzd8
2 . s16d

As soon as the nondiagonal components of tensorP are
considerably smaller than the diagonal onessexcept for the
points in the nearest vicinity of the anoded, the magnitudes of
the semiaxes of the ellipsoidsP8 and P at Prw=0 differ a
little. In the initial basis the ellipsoid given by the tensorP8
s16d, is rotated about thez axis in the planesr ,wd by the
anglea=arccosser ·er8d.

The semiaxis values of the pressure ellipsoids16d, nor-
malized by the isotropic pressurepsrd, are shown in Fig. 9
for the cathode and anode regions where the anisotropy of
pressure becomes especially apparent. In the positive col-
umn, as shown in the figure, the pressure of the electrons is
almost isotropic:ar <aw<az<1.

Figure 10 demonstrates the cuts of the equipressure sur-
facessellipsoids of pressured P8 by the planessr ,wd, sr ,zd,
andsz,wd for two distinctive points in the cathode and anode
regions marked in Fig. 9. Broken lines indicate the corre-
sponding cuts of a sphere relevant to the isotropic pressure.

FIG. 8. Radial profiles of the isotropic pressurep sad and the
components of anisotropic pressure tensor:Prr sbd, Pzz scd, Pww

=−sPrr +Pzzd sdd, Prw sed in units 108 eV cm−3. Numbers on curves
indicate magnetic field strength in gauss.
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In the cathode region the ellipsoid of pressure is extended in
the er direction and compressed in theez and especially in
the ew directions. Rotation of the ellipsoid due to the pres-
ence of nondiagonal elements is negligible in this region.
The deformation of the equipressure surface in the anode
region is less pronounced. Here, the ellipsoid extends in the
ew direction and contracts in theer andez directions. A rota-
tion of the ellipsoid in the planesr ,wd about the anglea
<5° is seen; this is caused by a relative increase of the
nondiagonal elementsPrw in comparison to the diagonal
ones in the anode region.

D. Transport of energy

According to results obtained for the terms in the energy
balance equations2d, divergence of the energy fluxjur bal-
ances the power gaineEjr in the cathode region and power

losses in collisions in the positive column. Power loss in
elastic collisionsHel is small under low-pressure conditions
compared with the power losses in ionizationHio and exci-
tation Hex collisions.

Azimuth components of the energy flux vectorjuw exceed,
as a rule, the radial componentsjur. Figure 11 demonstrates
the radial variation of the energy flux vector components.
The discharge regions, where the azimuth components be-
come equal to zero or change sign, are clearly seen. It is also
seen that under strong anisotropy conditionss100 Gd the
two-term approximation is insufficient. The differences in
radial dependencies of the energy and particle fluxes are seen

FIG. 9. Semiaxes of the ellipsoid of pressureP8, normalized by
the isotropic pressurepsrd in the cathode and anode regions at mag-
netic field strengthB=200 G.

FIG. 10. Cuts of the ellipsoids
of pressure by the principal planes
in the cathode and anode regions
at the points shown in Fig. 9. Bro-
ken lines are the cuts of the sphere
corresponding to the isotropic
pressure.

FIG. 11. Radial profiles of the radialjur and azimuthjuw electron
energy fluxes. Full and broken lines are the results of the multiterm
and two-term approximations, respectively. Numbers on curves in-
dicate magnetic field strength in gauss.
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from comparison of Figs. 5 and 11; these are stipulated by
large values of electron mean energy and small values of
electron density in the cathode region. The power gainejrE
is maximal near the cathode. For this reason, large energy
fluxes are formed in the cathode region, with their values
much exceeding those in the positive column. The situation
for particle fluxes is opposite. The time of energy transport
from cathode to anode is comparable with the time of the
particle transport.

Using the radial and azimuth energy flux components the
lines of energy flux can be constructed similarly to the lines
of current shown in Fig. 6. In Fig. 12 the spiral lines of
energy fluxes are shown in the transverse section of cylindri-
cal magnetron discharge. As in the case of particles, a tan-
gent to these curves defines the direction of the energy flux
vector j u. It is seen from comparison with Fig. 6 that the
numbers of loops of the energy flux lines are noticeably
smaller than those of the spirals for particle flux. This is
explained by the much smaller ratio of azimuth to radial
components for energy flux in comparison with the corre-
sponding ratio of the particle flux components. Distortions of
the spiral lines seen in the cathode region at weak magnetic
fields are similar to distortions in the lines of current; again
this is due to a change of sign of azimuth component. A
detailed study of this phenomena requires additional analysis
employing higher-order terms.

The third rank tensor corresponding to the energy flux
tensor

C =
nm

2
kvvv − v2Iv l s17d

consists of 27 components with six distinct nonzero compo-
nents. Explicit expressions for the nonzero components are

given in f8g. The radial dependencies of these components
are illustrated in Fig. 13.

This tensor has the property that a contraction with re-
spect to any pair of indices equals zero:Crrr +Crww+Crzz
=0 andCwrr +Cwww+Cwzz=0. Under anisotropic conditions
the tensor components withr the first index influence the
magnitude and direction of the radial component of the en-
ergy flux vectorjur, and those withw the first index influence
the azimuth partjuw. The role of anisotropy in energy trans-
port is important, as soon as the absolute values of the energy
flux tensor components are comparable to or even exceed
those for the energy flux vector; this can be seen by compar-
ing the corresponding quantities shown in Figs. 11 and 13. In

FIG. 12. Lines of electron energy flux in the planez=const of
the cylindrical magnetron discharge at different magnetic field
strengths. Multiterm approximationsfull linesd is compared with the
two-term approximationsbroken linesd.

FIG. 13. Radial profiles of the energy flux tensor components in
units of 1018 eV cm−2 s−1. Numbers on curves indicate magnetic
field strength in gauss.
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contrast to strong anisotropy in energy transport, it is weak in
the transport of momentum, which follows from the small-
ness of the anisotropic pressure tensor componentssFig. 8d
in comparison with the isotropic pressure.

Thus, the transport processes of particles, momentum, and
energy are considered for the cathode and anode regions, and
the positive column of the cylindrical magnetron discharge.

V. CONCLUSION

A general theory for multiterm decomposition of the
phase space distribution function in terms of the spherical
tensors is applied to describe the electron component in a
cylindrical magnetron discharge in argon. The distribution
functions and macroscopic quantities are calculated at vari-
ous magnetic and electric fields corresponding to those mea-
sured in experiments. The presence of an undulating struc-
ture in the distribution functions at weak magnetic fields is
demonstrated along with its flattening at larger fields. The
undulating structure at low magnetic field strengths is stipu-
lated by the relaxation of an initial high-energy swarm of
electrons ejected from the cathode surface and by the nonlo-
cal character of the distribution function formation. This
structure is flattened due to the distribution localization with
increasing magnetic field strength.

The balance equations for particles, radial and azimuth
momenta, and energy are considered with a discussion of the
main channels for the momentum and energy gain and loss.

Spiral trajectory lines are obtained to give a visual illustra-
tion for the directed particle and energy transport in the ra-
dial planes of the cylindrical magnetron discharge. The phe-
nomenon of electron pressure anisotropy is considered. The
equipressure surface under conditions of noticeable aniso-
tropy, in electrode regions for instance, is shown to transform
from a sphere, corresponding to the isotropic pressure, into
an ellipsoid. A method to calculate the values of the ellip-
soid’s semiaxes and the rotation angles is suggested. The
variation of the semiaxis values is shown in dependence on
the radial position. Additionally, the components of the en-
ergy flux vector and tensor are computed and a strong aniso-
tropy in the energy flux transport found.

Application of the multiterm theory developed inf9g and
generalized with respect to cylindrical magnetron discharge
in f8g permitted us to study many interesting phenomena that
were beyond the scope of the conventional two-term ap-
proximation. Taking higher-order decomposition terms into
account will be useful for future investigations of the solu-
tion convergence and the effect of higher expansion coeffi-
cients on the phenomena caused by the anisotropy.
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